Effect of very low-carbohydrate high-fat diet and high-intensity interval training on mental health-related indicators in individuals with excessive weight or obesity

Effect of very low-carbohydrate high-fat diet and high-intensity interval training on mental health-related indicators in individuals with excessive weight or obesity
  • Kamiński, M., Skonieczna-Żydecka, K., Nowak, J. K. & Stachowska, E. Global and local diet popularity rankings, their secular trends, and seasonal variation in Google Trends data. Nutrition. 2020(79–80), 110759. (2020).

    Article 

    Google Scholar 

  • Basile, A. Popularity of commercial and non-commercial diets from 2010–2020: A Google trends analysis. Curr Dev Nutr. 5(Supplement 2), 391. (2021).

    Article 
    PubMed Central 

    Google Scholar 

  • Brehm, B. J., Seeley, R. J., Daniels, S. R. & D’Alessio, D. A. A randomized trial comparing a very low carbohydrate diet and a calorie-restricted low fat diet on body weight and cardiovascular risk factors in healthy women. Journal of Clinical Endocrinology and Metabolism. 88(4), 1617–1623. (2003).

    Article 
    CAS 

    Google Scholar 

  • Ludwig, D. S. et al. The carbohydrate-insulin model: a physiological perspective on the obesity pandemic. Am J Clin Nutr. 114(6), 1873–1885. (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bueno, N. B., De Melo, I. S. V., De Oliveira, S. L. & Da Rocha Ataide, T. Very-low-carbohydrate ketogenic diet versus low-fat diet for long-term weight loss: A meta-analysis of randomised controlled trials. British Journal of Nutrition. 110(7), 1178–1187 (2013). https://doi.org/10.1017/S0007114513000548

  • Ludwig, D. S. The ketogenic diet: Evidence for optimism but high-quality research needed. J Nutr. 150(6), 1354–1359. (2020).

    Article 

    Google Scholar 

  • Noakes, T. D. & Windt, J. Evidence that supports the prescription of low-carbohydrate high-fat diets: A narrative review. Br J Sports Med. 51, 133–139. (2017).

    Article 
    PubMed 

    Google Scholar 

  • Newsome, A. M., Reed, R., Sansone, J., Batrakoulis, A., McAvoy, C. W. & Parrott, M. 2024 ACSM worldwide fitness trends: Future directions of the health and fitness industry. ACSMs Health Fit J. 28(1), 14–26 (2024). https://doi.org/10.1249/FIT.0000000000000933

  • Keating, S. E., Johnson, N. A., Mielke, G. I. & Coombes, J. S. A systematic review and meta-analysis of interval training versus moderate-intensity continuous training on body adiposity. Obesity Reviews. 18(8), 943–964. (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gunnarsson, T. P. & Bangsbo, J. The 10–20-30 training concept improves performance and health profile in moderately trained runners. J Appl Physiol. 113(1), 16–24. (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bangsbo, J., Gunnarsson, T. P., Wendell, J., Nybo, L. & Thomassen, M. Reduced volume and increased training intensity elevate muscle Na+ – K+ pump α2-subunit expression as well as short- and long-term work capacityin humans. J Appl Physiol. 107(6), 1771–1780. (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bayati, M., Farzad, B., Gharakhanlou, R. & Agha-alinejad, H. A practical model of low-volume high-intensity interval training induces performance and metabolic adaptations that resemble ‘ all-out ’ sprint interval training. J Sports Sci Med. 10(3), 571–576 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Grace, F. et al. High intensity interval training (HIIT) improves resting blood pressure, metabolic ( MET ) capacity and heart rate reserve without compromising cardiac function in sedentary aging men. Exp Gerontol. 109, 75–81. (2018).

    Article 
    PubMed 

    Google Scholar 

  • John, A. T. et al. Effectiveness of high-intensity interval training and continuous moderate-intensity training on blood pressure in physically inactive pre-hypertensive young adults. J Cardiovasc Dev Dis. 9(8), 246. (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stavrinou, P. S., Bogdanis, G. C., Giannaki, C. D., Terzis, G. & Hadjicharalambous, M. High-intensity interval training frequency: Cardiometabolic effects and quality of life. Int J Sports Med. 39(3), 210–217. (2018).

    Article 
    PubMed 

    Google Scholar 

  • Batrakoulis, A., Jamurtas, A. Z. & Fatouros, I. G. High-Intensity interval training in metabolic diseases. ACSMs Health Fit J. 25(5), 54–59. (2021).

    Article 

    Google Scholar 

  • Batrakoulis, A. et al. Comparative efficacy of 5 exercise types on cardiometabolic health in overweight and obese adults: A systematic review and network meta-analysis of 81 randomized controlled trials. Circ Cardiovasc Qual Outcomes. 15(6), E008243. (2022).

    Article 
    PubMed 

    Google Scholar 

  • Hu, J., Wang, Z., Lei, B., Li, J. & Wang, R. Effects of a low-carbohydrate high-fat diet combined with high-intensity interval training on body composition and maximal oxygen uptake: A systematic review and meta-analysis. Int J Environ Res Public Health. 18(20), 10740. (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, T. & Bazzano, L. A. The low-carbohydrate diet and cardiovascular risk factors: Evidence from epidemiologic studies. Nutrition, Metabolism and Cardiovascular Diseases. 24(4), 337–343. (2014).

    Article 
    CAS 

    Google Scholar 

  • Donovan, G. O. et al. Changes in cardiorespiratory fitness and coronary heart disease risk factors following 24 wk of moderate- or high-intensity exercise of equal energy cost. J Appl Physiol. 98(5), 1619–1625. (2005).

    Article 

    Google Scholar 

  • Sawyer, A., Cavalheri, V. & Hill, K. Effects of high intensity interval training on exercise capacity in people with chronic pulmonary conditions: A narrative review. BMC Sport Science, Medicine and Rehabilitation. 12(22), 1–10 (2020).

    Google Scholar 

  • Cipryan, L. et al. Effects of a very low-carbohydrate high-fat diet and high-intensity interval training on visceral fat deposition and cardiorespiratory fitness in overfat individuals: A randomized controlled clinical trial. Front Nutr. 8, 785694. (2021).

    Article 
    PubMed 

    Google Scholar 

  • World Health Organization. Basic Documents: Forty-Ninth Edition (Including Amendments Adopted up to 31 May 2019). 49th ed. (2020).

  • Lasikiewicz, N., Myrissa, K., Hoyland, A. & Lawton, C. L. Psychological benefits of weight loss following behavioural and/or dietary weight loss interventions. A systematic research review. Appetite 72, 123–137. (2014).

    Article 
    CAS 

    Google Scholar 

  • The Whoqol Group. The World Health Organization quality of life assessment (WHOQOL): Development and general psychometric properties. Soc Sci Med. 46(12), 1569–1585. (1998).

    Article 

    Google Scholar 

  • Sitlinger, A. & Zafar, S. Y. Health-related quality of life: The impact on morbidity and mortality. Surg Oncol Clin N Am. 27(4), 675–684. (2018).

    Article 

    Google Scholar 

  • Alhalel, N., Schueller, S. M. & O’Brien, M. J. Association of changes in mental health with weight loss during intensive lifestyle intervention: Does the timing matter?. Obes Sci Pract. 4(2), 153–158. (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shepherd, S. O., Wilson, O. J. & Taylor, A. S. et al. Low-volume high-intensity interval training in a gym setting improves cardio-metabolic and psychological health. PLoS ONE 10(9), e0139056. (2015).

  • Batrakoulis, A. & Fatouros, I. G. Psychological adaptations to high-intensity interval training in overweight and obese adults: A topical review. Sports. 10(5), 64. (2022).

    Article 
    PubMed 

    Google Scholar 

  • Cipryan, L. et al. Very low-carbohydrate high-fat diet improves risk markers for cardiometabolic health more than exercise in men and women with overfat constitution: Secondary analysis of a randomized controlled clinical trial. Front Nutr. 9(May), 1–13. (2022).

    Article 
    CAS 

    Google Scholar 

  • Cipryan, L. et al. A lipidomic and metabolomic signature of a very low-carbohydrate high-fat diet and high-intensity interval training: an additional analysis of a randomized controlled clinical trial. Metabolomics. 20(1), 10. (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sindler, D., Kastovska, B., Dostal, T., Cipryan, L. & Elavsky, S. The effects of carbohydrate-restricted diet on psychological outcomes: A systematic review of randomized controlled trials. Nutr Rev. 82(2), 228–239. (2024).

    Article 

    Google Scholar 

  • Bashan, I. & Toros, T. Effect of regular exercise on the life satisfaction and self-efficacy of the elderly obese. Progress in Nutrition. 23(4), e2021325. (2021).

    Article 

    Google Scholar 

  • Rosa Guillamón, A., García Cantó, E., Pérez Soto, J. J. & Rodríguez García, P. L. Weight status, physical fitness and satisfaction with life among elementary school children. A pilot study. MHSALUD: Revista en Ciencias del Movimiento Humano y Salud. 13(2), 1659–1697. (2017).

  • Zayed, K. N., Ahmed, M. D., Van Niekerk, R. L. & Ho, W. K. Y. The mediating role of exercise behaviour on satisfaction with life, mental well-being and BMI among university employees. Cogent Psychol. 5(1), 1430716. (2018).

  • Wu, C. H., Chen, L. H. & Tsai, Y. M. Longitudinal invariance analysis of the satisfaction with life scale. Pers Individ Dif. 46(4), 396–401. (2009).

    Article 

    Google Scholar 

  • Eather, N. et al. Efficacy and feasibility of HIIT training for university students: The Uni-HIIT RCT. J Sci Med Sport. 22(5), 596–601. (2019).

    Article 
    PubMed 

    Google Scholar 

  • Adams, S. C. et al. Effects of high-intensity interval training on fatigue and quality of life in testicular cancer survivors. Br J Cancer. 118(10), 1313–1321. (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Batrakoulis, A. et al. High-intensity interval neuromuscular training promotes exercise behavioral regulation, adherence and weight loss in inactive obese women. Eur J Sport Sci. 20(6), 783–792. (2020).

    Article 
    PubMed 

    Google Scholar 

  • Imayama, I. et al. Dietary weight loss and exercise interventions effects on quality of life in overweight/obese postmenopausal women: A randomized controlled trial. International Journal of Behavioral Nutrition and Physical Activity. 8(1), 118. (2011).

    Article 

    Google Scholar 

  • Strahler, J., Wurst, R., Fuchs, R. & Wunsch, K. Joint associations of regular exercise and healthy diet with psychobiological stress reactivity in a healthy male sample. Stress. 24(6), 696–709. (2021).

    Article 
    PubMed 

    Google Scholar 

  • Cohen, C. W., Fontaine, K. R., Arend, R. C., Soleymani, T. & Gower, B. A. Favorable effects of a ketogenic diet on physical function, perceived energy, and food cravings in women with ovarian or endometrial cancer: A randomized, controlled trial. Nutrients. 10(9), 1187. (2018).

    Article 
    CAS 

    Google Scholar 

  • Yancy, W. S. J. et al. Effects of two weight-loss diets on health-related quality of life. Quality of Life Research. 18(3), 281–289. (2009).

    Article 

    Google Scholar 

  • McCambridge, J., Witton, J. & Elbourne, D. R. Systematic review of the Hawthorne effect: New concepts are needed to study research participation effects. J Clin Epidemiol. 67(3), 267–277. (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • French, D. P. & Sutton, S. Reactivity of measurement in health psychology: How much of a problem is it? What can be done about it?. Br J Health Psychol. 15(3), 453–468. (2010).

    Article 

    Google Scholar 

  • König, L. M., Allmeta, A., Christlein, N., Van Emmenis, M. & Sutton, S. A systematic review and meta-analysis of studies of reactivity to digital in-the-moment measurement of health behaviour. Health Psychol Rev. 16(4), 551–575. (2022).

    Article 
    PubMed 

    Google Scholar 

  • Capellan, J., Wilde, M. H. & Zhang, F. Measurement reactivity in a randomized clinical trial using self-reported data. Journal of Nursing Scholarship. 49(1), 111–119. (2017).

    Article 

    Google Scholar 

  • French, D. P. et al. Reducing bias in trials due to reactions to measurement: experts produced recommendations informed by evidence. J Clin Epidemiol. 139, 130–139. (2021).

    Article 

    Google Scholar 

  • Ehrman, J. K., Gordon, P. M., Visich, P. S. & Keteyian, S. J. eds. Clinical Exercise Physiology Fourth Edition. 4. Human Kinetics, Champaign, IL (2019).

  • Feinman, R. D. R. D. et al. Dietary carbohydrate restriction as the first approach in diabetes management: Critical review and evidence base. Nutrition. 31(1), 1–13. (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ware, J. E. J., Kosinski, M. & Keller, S. D. A 12-item short-form health survey of scales and preliminary construction tests of reliability and validity. Med Care. 34(3), 220–233 (1996).

    Article 

    Google Scholar 

  • Ware, J. E. J., Kosinski, M. & Keller, S. D. SF-12: How to score the SF-12 Physical and Mental Health Summary Scales. Vol 2. Second (1995).

  • Diener, E., Emmons, R. A., Larsen, R. J. & Griffin, S. The satisfaction with life scale. J Pers Assess. 49(1), 71–75. (1985).

    Article 
    CAS 

    Google Scholar 

  • Cohen, S., Kamarck, T. & Mermelstein, R. A global measure of perceived stress Sheldon Cohen, Tom Kamarck and Robin Mermelstein Journal of Health and Social Behavior Vol. 24, No. 4 (Dec., 1983), pp. 385–396 (12 pages) Published By: American Sociological Association. Journal of Health and Social Behavior. 24(4), 385–396 (1983).

  • Tomczak, M. & Tomczak, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 1(21), 19–25 (2014).

  • link