Biological comparisons between pre-eclampsia and placenta accreta spectrum
Liu, Y. et al. Single-cell RNA-seq reveals the diversity of trophoblast subtypes and patterns of differentiation in the human placenta. Cell Res. 28, 819–832 (2018).
Google Scholar
Burton, G. J. & Fowden, A. L. The placenta: a multifaceted, transient organ. Philos. Trans. R. Soc. Lond B Biol. Sci. 370, 20140066 (2015).
Google Scholar
Shi, Q. J., Lei, Z. M., Rao, C. V. & Lin, J. Novel role of human chorionic gonadotropin in differentiation of human cytotrophoblasts. Endocrinology 132, 1387–1395 (1993).
Google Scholar
Yabe, S. et al. Comparison of syncytiotrophoblast generated from human embryonic stem cells and from term placentas. Proc. Natl Acad. Sci. USA 113, E2598–E2607 (2016).
Google Scholar
Burton, G. J., Cindrova-Davies, T., Yung, H. W. & Jauniaux, E. Hypoxia and reproductive health: oxygen and development of the human placenta. Reproduction 161, F53–f65 (2021).
Google Scholar
Moser, G. & Huppertz, B. Implantation and extravillous trophoblast invasion: from rare archival specimens to modern biobanking. Placenta 56, 19–26 (2017).
Google Scholar
Pijnenborg, R., Vercruysse, L. & Hanssens, M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta 27, 939–958 (2006).
Google Scholar
Ma, Y. et al. Placental endovascular extravillous trophoblasts (enEVTs) educate maternal T-cell differentiation along the maternal-placental circulation. Cell Prolif. 53, e12802 (2020).
Google Scholar
Jauniaux, E., Jurkovic, D., Hussein, A. M. & Burton, G. J. New insights into the etiopathology of placenta accreta spectrum. Am. J. Obstet. Gynecol. 227, 384–391 (2022).
Google Scholar
Sokratous, N. et al. Screening for pre-eclampsia by maternal serum glycosylated fibronectin at 11-13 weeks’ gestation. Ultrasound Obstetrics Gynecol. 62, 504–511 (2023).
Google Scholar
Higgins, M. F., Monteith, C., Foley, M. & O’Herlihy, C. Real increasing incidence of hysterectomy for placenta accreta following previous caesarean section. Eur. J. Obstetrics Gynecol Reprod. Biol. 171, 54–56 (2013).
Google Scholar
Jauniaux, E., Chantraine, F., Silver, R. M. & Langhoff-Roos, J. FIGO consensus guidelines on placenta accreta spectrum disorders: Epidemiology. Int. J. Gynaecol. Obstetrics 140, 265–273 (2018).
Google Scholar
Roeder, H. A., Cramer, S. F. & Leppert, P. C. A look at uterine wound healing through a histopathological study of uterine scars. Reprod. Sci. 19, 463–473 (2012).
Google Scholar
Jauniaux, E., Grønbeck, L., Bunce, C., Langhoff-Roos, J. & Collins, S. L. Epidemiology of placenta previa accreta: a systematic review and meta-analysis. BMJ Open 9, e031193 (2019).
Google Scholar
Jauniaux, E., Hussein, A. M., Einerson, B. D. & Silver, R. M. Debunking 20(th) century myths and legends about the diagnosis of placenta accreta spectrum. Ultrasound Obstetrics Gynecol. 59, 417–423 (2022).
Google Scholar
Jauniaux, E. et al. Searching for placenta percreta: a prospective cohort and systematic review of case reports. Am. J. Obstet. Gynecol. 226, 837.e831–837.e813 (2022).
Google Scholar
Einerson, B. D. et al. Ultrasonography of the explanted uterus in placenta accreta spectrum: correlation with intraoperative findings and gross pathology. Obstet. Gynecol. 141, 544–554 (2023).
Google Scholar
Einerson, B. D. et al. Placenta accreta spectrum disorder: uterine dehiscence, not placental invasion. Obstet. Gynecol. 135, 1104–1111 (2020).
Google Scholar
Adu-Bredu, T. K. et al. Three-dimensional volume rendering ultrasound for assessing placenta accreta spectrum severity and discriminating it from simple scar dehiscence. Am. J. Obstet. Gynecol. MFM 6, 101321 (2024).
Google Scholar
Hecht, J. L. et al. Classification and reporting guidelines for the pathology diagnosis of placenta accreta spectrum (PAS) disorders: recommendations from an expert panel. Mod. Pathol. 33, 2382–2396 (2020).
Google Scholar
Afshar, Y. et al. Placenta accreta spectrum disorder at single-cell resolution: a loss of boundary limits in the decidua and endothelium. Am. J. Obstet. Gynecol. 230, 443.e1–18 (2024).
Bartels, H. C. et al. Spatial proteomics and transcriptomics of placenta accreta spectrum. bioRxiv, 2024.2003.2021.585167 (2024).
Jauniaux, E., Ayres-de-Campos, D., Langhoff-Roos, J., Fox, K. A. & Collins, S. FIGO classification for the clinical diagnosis of placenta accreta spectrum disorders. Int. J. Gynaecol. Obstet. 146, 20–24 (2019).
Google Scholar
Shamshirsaz, A. A. et al. Maternal morbidity in patients with morbidly adherent placenta treated with and without a standardized multidisciplinary approach. Am. J. Obstet. Gynecol. 212, 218.e211–219 (2015).
Google Scholar
Bartels, H. C. et al. Association of implementing a multidisciplinary team approach in the management of morbidly adherent placenta with maternal morbidity and mortality. Obstet. Gynecol. 132, 1167–1176 (2018).
Google Scholar
Hypertension in pregnancy: diagnosis and management. Guideline available at Accessed March 2024.
Rolnik, D. L. et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med. 377, 613–622 (2017).
Google Scholar
Ashraf, U. M., Hall, D. L., Rawls, A. Z. & Alexander, B. T. Epigenetic processes during preeclampsia and effects on fetal development and chronic health. Clin. Sci. 135, 2307–2327 (2021).
Google Scholar
Tan, M. Y. et al. Comparison of diagnostic accuracy of early screening for pre-eclampsia by NICE guidelines and a method combining maternal factors and biomarkers: results of SPREE. Ultrasound Obstet. Gynecol. 51, 743–750 (2018).
Google Scholar
Huppertz, B. Placental origins of preeclampsia: challenging the current hypothesis. Hypertension 51, 970–975 (2008).
Google Scholar
Natenzon, A., McFadden, P., DaSilva-Arnold, S. C., Zamudio, S. & Illsley, N. P. Diminished trophoblast differentiation in early onset preeclampsia. Placenta 120, 25–31 (2022).
Google Scholar
Liu, H., Wang, W. & Liu, C. Increased expression of IFN-γ in preeclampsia impairs human trophoblast invasion via a SOCS1/JAK/STAT1 feedback loop. Exp. Ther. Med. 21, 112 (2021).
Google Scholar
Goldman-Wohl, D. & Yagel, S. Regulation of trophoblast invasion: from normal implantation to pre-eclampsia. Mol. Cell Endocrinol. 187, 233–238 (2002).
Google Scholar
Hubel, C. A. Oxidative stress in the pathogenesis of preeclampsia. Proc. Soc. Exp. Biol. Med. 222, 222–235 (1999).
Google Scholar
Myatt, L. & Cui, X. Oxidative stress in the placenta. Histochem. Cell Biol. 122, 369–382 (2004).
Google Scholar
Levine, R. J. et al. Circulating angiogenic factors and the risk of preeclampsia. N. Engl. J. Med. 350, 672–683 (2004).
Google Scholar
Vaisbuch, E. et al. Circulating angiogenic and antiangiogenic factors in women with eclampsia. Am. J. Obstet. Gynecol. 204, 152.e151–159 (2011).
Google Scholar
McNally, L. et al. Up-regulated cytotrophoblast DOCK4 contributes to over-invasion in placenta accreta spectrum. Proc. Natl Acad. Sci. USA 117, 15852–15861 (2020).
Google Scholar
Hecht, J. L., Karumanchi, S. A. & Shainker, S. A. Immune cell infiltrate at the utero-placental interface is altered in placenta accreta spectrum disorders. Arch. Gynecol. Obstet. 301, 499–507 (2020).
Google Scholar
Murrieta-Coxca, J. M. et al. Identification of altered miRNAs and their targets in placenta accreta. Front. Endocrinol. 14, 1021640 (2023).
Google Scholar
Liu, J., Lv, S. S., Fu, Z. Y. & Hou, L. L. Baicalein enhances migration and invasion of extravillous trophoblasts via activation of the NF-κB pathway. Med. Sci. Monit. 24, 2983–2991 (2018).
Google Scholar
Vaughan, J. E. & Walsh, S. W. Activation of NF-κB in placentas of women with preeclampsia. Hypertens. Pregnancy 31, 243–251 (2012).
Google Scholar
Huber, A. V., Saleh, L., Bauer, S., Husslein, P. & Knöfler, M. TNFalpha-mediated induction of PAI-1 restricts invasion of HTR-8/SVneo trophoblast cells. Placenta 27, 127–136 (2006).
Google Scholar
Ye, Y. et al. Role of plasminogen activator inhibitor type 1 in pathologies of female reproductive diseases. Int. J. Mol. Sci. 18, 1651 (2017).
Kent, L. N., Rumi, M. A., Kubota, K., Lee, D. S. & Soares, M. J. FOSL1 is integral to establishing the maternal-fetal interface. Mol. Cell Biol. 31, 4801–4813 (2011).
Google Scholar
Kang, J. et al. The emerging role of EGFL6 in angiogenesis and tumor progression. Int. J. Med. Sci. 17, 1320–1326 (2020).
Google Scholar
Admati, I. et al. Two distinct molecular faces of preeclampsia revealed by single-cell transcriptomics. Med 4, 687–709.e687 (2023).
Google Scholar
Kauma, S. W., Bae-Jump, V. & Walsh, S. W. Hepatocyte growth factor stimulates trophoblast invasion: a potential mechanism for abnormal placentation in preeclampsia. J. Clin. Endocrinol. Metab. 84, 4092–4096 (1999).
Google Scholar
Fan, Z. et al. The vascular gene Apold1 is dispensable for normal development but controls angiogenesis under pathological conditions. Angiogenesis 26, 385–407 (2023).
Google Scholar
Junus, K. et al. Gene expression profiling of placentae from women with early- and late-onset pre-eclampsia: down-regulation of the angiogenesis-related genes ACVRL1 and EGFL7 in early-onset disease. Mol. Hum. Reprod. 18, 146–155 (2012).
Google Scholar
Tong, J. et al. Transcriptomic profiling in human decidua of severe preeclampsia detected by RNA sequencing. J. Cell Biochem. 119, 607–615 (2018).
Google Scholar
Wei, L., Liping, Z. & Suya, K. Expression of insulin-like growth factor binding protein-3 in HELLP syndrome. BMC Pregnancy Childbirth 23, 778 (2023).
Google Scholar
Kristensen, K., Larsson, I. & Hansson, S. R. Increased cystatin C expression in the pre-eclamptic placenta. Mol. Hum. Reprod. 13, 189–195 (2007).
Google Scholar
Trowsdale, J. & Betz, A. G. Mother’s little helpers: mechanisms of maternal-fetal tolerance. Nat. Immunol. 7, 241–246 (2006).
Google Scholar
Dunk, C. E. et al. Human leukocyte antigen HLA-C, HLA-G, HLA-F, and HLA-E placental profiles are altered in early severe preeclampsia and preterm birth with chorioamnionitis. Am. J. Obstet. Gynecol. 227, 641.e641–641.e613 (2022).
Google Scholar
Zhang, R. et al. PD-L1 enhances migration and invasion of trophoblasts by upregulating ARHGDIB via transcription factor PU.1. Cell Death Discov. 8, 395 (2022).
Google Scholar
Veras, E., Kurman, R. J., Wang, T. L. & Shih, I. M. PD-L1 expression in human placentas and gestational trophoblastic diseases. Int. J. Gynecol. Pathol. 36, 146–153 (2017).
Google Scholar
Schwede, S., Alfer, J. & von Rango, U. Differences in regulatory T-cell and dendritic cell pattern in decidual tissue of placenta accreta/increta cases. Placenta 35, 378–385 (2014).
Google Scholar
Wedenoja, S. et al. Fetal HLA-G mediated immune tolerance and interferon response in preeclampsia. EBioMedicine 59, 102872 (2020).
Google Scholar
Goldman-Wohl, D. S. et al. Lack of human leukocyte antigen-G expression in extravillous trophoblasts is associated with pre-eclampsia. Mol. Hum. Reprod. 6, 88–95 (2000).
Google Scholar
Hiby, S. E. et al. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J. Exp. Med. 200, 957–965 (2004).
Google Scholar
Zhang, Y. et al. The altered PD-1/PD-L1 pathway delivers the ‘one-two punch’ effects to promote the Treg/Th17 imbalance in pre-eclampsia. Cell Mol. Immunol. 15, 710–723 (2018).
Google Scholar
Mittelberger, J. et al. The programmed cell death protein 1 (PD1) and the programmed cell death ligand 1 (PD-L1) are significantly downregulated on macrophages and Hofbauer cells in the placenta of preeclampsia patients. J. Reprod. Immunol. 157, 103949 (2023).
Google Scholar
Arutyunyan, A. et al. Spatial multiomics map of trophoblast development in early pregnancy. Nature 616, 143–151 (2023).
Google Scholar
Wang, R. et al. Decreased AGGF1 facilitates the progression of placenta accreta spectrum via mediating the P53 signaling pathway under the regulation of miR-1296-5p. Reprod. Biol. 23, 100735 (2023).
Google Scholar
Axt-Fliedner, R. et al. The immunolocalization of Bcl-2 in human term placenta. Clin. Exp. Obstet. Gynecol. 28, 144–147 (2001).
Google Scholar
Pathare-Ingawale, P. et al. Association between proNGF receptors and apoptotic factors in human placentae. Placenta 139, 43–48 (2023).
Google Scholar
Kasture, V., Sundrani, D., Randhir, K., Wagh, G. & Joshi, S. Placental apoptotic markers are associated with placental morphometry. Placenta 115, 1–11 (2021).
Google Scholar
Ishihara, N. et al. Increased apoptosis in the syncytiotrophoblast in human term placentas complicated by either preeclampsia or intrauterine growth retardation. Am. J. Obstet. Gynecol. 186, 158–166 (2002).
Google Scholar
Genbacev, O., DiFederico, E., McMaster, M. & Fisher, S. J. Invasive cytotrophoblast apoptosis in pre-eclampsia. Hum. Reprod. 14(Suppl 2), 59–66 (1999).
Google Scholar
Kadyrov, M., Kingdom, J. C. & Huppertz, B. Divergent trophoblast invasion and apoptosis in placental bed spiral arteries from pregnancies complicated by maternal anemia and early-onset preeclampsia/intrauterine growth restriction. Am. J. Obstet. Gynecol. 194, 557–563 (2006).
Google Scholar
Wang, C. C. et al. Innate immune response by ficolin binding in apoptotic placenta is associated with the clinical syndrome of preeclampsia. Clin. Chem. 53, 42–52 (2007).
Google Scholar
Buurma, A. et al. Preeclampsia is characterized by placental complement dysregulation. Hypertension 60, 1332–1337 (2012).
Google Scholar
Blakey, H. et al. Pre-eclampsia is associated with complement pathway activation in the maternal and fetal circulation, and placental tissue. Pregnancy Hypertens. 32, 43–49 (2023).
Google Scholar
Lokki, A. I. et al. Identification of complement factor H variants that predispose to pre-eclampsia: a genetic and functional study. BJOG Int. J. Obstet. Gynaecol. 130, 1473–1482 (2023).
Derzsy, Z., Prohászka, Z., Rigó, J. Jr., Füst, G. & Molvarec, A. Activation of the complement system in normal pregnancy and preeclampsia. Mol. Immunol. 47, 1500–1506 (2010).
Google Scholar
Denny, K. J., Woodruff, T. M., Taylor, S. M. & Callaway, L. K. Complement in pregnancy: a delicate balance. Am. J. Reprod. Immunol. 69, 3–11 (2013).
Google Scholar
Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563, 347–353 (2018).
Google Scholar
Gundappa, M., Arumugam, V. A., Hsieh, H. L., Balasubramanian, B. & Shanmugam, V. Expression of tissue factor and TF-mediated integrin regulation in HTR-8/SVneo trophoblast cells. J. Reprod. Immunol. 150, 103473 (2022).
Google Scholar
Shu, C. et al. Integrin β1 regulates proliferation, apoptosis, and migration of trophoblasts through activation of phosphoinositide 3 kinase/protein kinase B signaling. J. Obstet. Gynecol. Res. 47, 2406–2416 (2021).
Google Scholar
Li, P. et al. microRNA-29b contributes to pre-eclampsia through its effects on apoptosis, invasion and angiogenesis of trophoblast cells. Clin. Sci. 124, 27–40 (2013).
Google Scholar
Zou, A. X., Chen, B., Li, Q. X. & Liang, Y. C. MiR-134 inhibits infiltration of trophoblast cells in placenta of patients with preeclampsia by decreasing ITGB1 expression. Eur. Rev. Med. Pharmacol. Sci. 22, 2199–2206 (2018).
Google Scholar
Wang, Q. et al. Single-cell transcriptional profiling reveals cellular and molecular divergence in human maternal-fetal interface. Sci. Rep. 12, 10892 (2022).
Google Scholar
Su, M. T., Tsai, P. Y., Tsai, H. L., Chen, Y. C. & Kuo, P. L. miR-346 and miR-582-3p-regulated EG-VEGF expression and trophoblast invasion via matrix metalloproteinases 2 and 9. Biofactors 43, 210–219 (2017).
Google Scholar
Isaka, K. et al. Expression and activity of matrix metalloproteinase 2 and 9 in human trophoblasts. Placenta 24, 53–64 (2003).
Google Scholar
Soyama, H. et al. Placenta previa may acquire invasive nature by factors associated with epithelial-mesenchymal transition and matrix metalloproteinases. J. Obstet. Gynaecol. Res. 46, 2526–2533 (2020).
Wang, R. et al. Overexpressed LAMC2 promotes trophoblast over-invasion through the PI3K/Akt/MMP2/9 pathway in placenta accreta spectrum. J. Obstet. Gynaecol. Res. 49, 548–559 (2023).
Google Scholar
Shokry, M., Omran, O. M., Hassan, H. I., Elsedfy, G. O. & Hussein, M. R. Expression of matrix metalloproteinases 2 and 9 in human trophoblasts of normal and preeclamptic placentas: preliminary findings. Exp. Mol. Pathol. 87, 219–225 (2009).
Google Scholar
Amakye, D. et al. Extracellular matrix metalloproteinases inducer gene polymorphism and reduced serum matrix metalloprotease-2 activity in preeclampsia patients. Exp. Biol. Med. 248, 1550–1555 (2023).
Google Scholar
Li, W., Mata, K. M., Mazzuca, M. Q. & Khalil, R. A. Altered matrix metalloproteinase-2 and -9 expression/activity links placental ischemia and anti-angiogenic sFlt-1 to uteroplacental and vascular remodeling and collagen deposition in hypertensive pregnancy. Biochem. Pharmacol. 89, 370–385 (2014).
Google Scholar
Wang, F. et al. First trimester serum PAPP-A is associated with placenta accreta: a retrospective study. Arch. Gynecol. Obstet. 303, 645–652 (2021).
Google Scholar
Desai, N. et al. Elevated first trimester PAPP–a is associated with increased risk of placenta accreta. Prenat. Diagn. 34, 159–162 (2014).
Google Scholar
Zhong, Q. et al. Structural insights into the covalent regulation of PAPP-A activity by proMBP and STC2. Cell Discov. 8, 137 (2022).
Google Scholar
Kalousová, M., Muravská, A. & Zima, T. Pregnancy-associated plasma protein A (PAPP-A) and preeclampsia. Adv. Clin. Chem. 63, 169–209 (2014).
Google Scholar
Krantz, D. et al. Association of extreme first-trimester free human chorionic gonadotropin-beta, pregnancy-associated plasma protein A, and nuchal translucency with intrauterine growth restriction and other adverse pregnancy outcomes. Am. J. Obstet. Gynecol. 191, 1452–1458 (2004).
Google Scholar
Lai, W. & Yu, L. Insulin-like growth factor 1 ameliorates pre-eclampsia by inhibiting zinc finger E-box binding homeobox 1 by up-regulation of microRNA-183. J. Cell Mol. Med. 27, 1179–1191 (2023).
Google Scholar
Kaitu’u-Lino, T. J. et al. Activating Transcription Factor 3 is reduced in preeclamptic placentas and negatively regulates sFlt-1 (Soluble fms-Like Tyrosine Kinase 1), soluble endoglin, and proinflammatory Cytokines in Placenta. Hypertension 70, 1014–1024 (2017).
Google Scholar
Zhang, Y. et al. Downregulation of decidual SP1 and P300 is associated with severe preeclampsia. J. Mol. Endocrinol. 60, 133–143 (2018).
Google Scholar
Park, M. N. et al. The expression and activation of sex steroid receptors in the preeclamptic placenta. Int. J. Mol. Med. 41, 2943–2951 (2018).
Google Scholar
Zhou, W. et al. Trophoblast cell subtypes and dysfunction in the placenta of individuals with preeclampsia revealed by single‑Cell RNA Sequencing. Mol. Cells 45, 317–328 (2022).
Google Scholar
Zhang, H., Wei, X. & Li, M. The expression of Sirt1/FoxO1 pathway in the placenta of patients with preeclampsia and its connection with prognosis. J. Obstet. Gynaecol. 42, 3514–3521 (2022).
Google Scholar
Zhou, W. et al. Characterizing immune variation and diagnostic indicators of preeclampsia by single-cell RNA sequencing and machine learning. Commun. Biol. 7, 32 (2024).
Google Scholar
Chern, S. R. et al. Spatiotemporal expression of SERPINE2 in the human placenta and its role in extravillous trophoblast migration and invasion. Reprod. Biol. Endocrinol. 9, 106 (2011).
Google Scholar
Ma, R., Gu, B., Gu, Y., Groome, L. J. & Wang, Y. Down-regulation of TIMP3 leads to increase in TACE expression and TNFα production by placental trophoblast cells. Am. J. Reprod. Immunol. 71, 427–433 (2014).
Google Scholar
Tang, H. et al. Down-regulation of the Sp1 transcription factor by an increase of microRNA-4497 in human placenta is associated with early recurrent miscarriage. Reprod. Biol. Endocrinol. 19, 21 (2021).
Google Scholar
Tian, F. et al. Effects of the SPI/lncRNA NEAT1 axis on functions of trophoblast and decidual cells in patients with recurrent miscarriage. Crit. Rev. Eukaryot. Gene Expr. 33, 47–60 (2023).
Google Scholar
Calicchio, R. et al. Preeclamptic plasma induces transcription modifications involving the AP-1 transcriptional regulator JDP2 in endothelial cells. Am. J. Pathol. 183, 1993–2006 (2013).
Google Scholar
Yang, Y. et al. Regulation of SIRT1 and its roles in inflammation. Front. Immunol. 13, 831168 (2022).
Google Scholar
Lee, K. M., Seo, H. W., Kwon, M. S., Han, A. R. & Lee, S. K. SIRT1 negatively regulates invasive and angiogenic activities of the extravillous trophoblast. Am. J. Reprod. Immunol. 82, e13167 (2019).
Google Scholar
Garrido-Gómez, T., Castillo-Marco, N., Cordero, T. & Simón, C. Decidualization resistance in the origin of preeclampsia. Am. J. Obstet. Gynecol. 226, S886–s894 (2022).
Google Scholar
Li, L., Liu, L. & Xu, Y. Hypertension in pregnancy as a risk factor for placenta accreta spectrum: a systematic review incorporating a network meta-analysis. Arch. Gynecol. Obstet. 307, 1323–1329 (2023).
Google Scholar
Wang, W. et al. Association between hypertensive disorders complicating pregnancy and risk of placenta accreta: a meta-analysis and systematic review. Hypertens. Pregnancy 37, 168–174 (2018).
Google Scholar
Zhou, Y. et al. Reversal of gene dysregulation in cultured cytotrophoblasts reveals possible causes of preeclampsia. J. Clin. Investig. 123, 2862–2872 (2013).
Google Scholar
Garrido-Gomez, T. et al. Defective decidualization during and after severe preeclampsia reveals a possible maternal contribution to the etiology. Proc. Natl Acad. Sci. USA 114, E8468–e8477 (2017).
Google Scholar
Fitzpatrick, K. E. et al. Incidence and risk factors for placenta accreta/increta/percreta in the UK: a national case-control study. PloS ONE 7, e52893 (2012).
Google Scholar
Zhou, J. et al. Uterine damage induces placenta accreta and immune imbalance at the maternal-fetal interface in the mouse. Placenta 119, 8–16 (2022).
Google Scholar
Schwickert, A. et al. Maternal serum VEGF predicts abnormally invasive placenta better than NT-proBNP: a multicenter case-control study. Reprod. Sci. 28, 361–370 (2021).
Google Scholar
Shainker, S. A. et al. Placenta accreta spectrum: biomarker discovery using plasma proteomics. Am. J. Obstet. Gynecol. 223, 433.e431–433.e414 (2020).
Google Scholar
Tseng, J. J. et al. Differential expression of vascular endothelial growth factor, placenta growth factor and their receptors in placentae from pregnancies complicated by placenta accreta. Placenta 27, 70–78 (2006).
Google Scholar
Laban, M., Ibrahim, E. A., Elsafty, M. S. & Hassanin, A. S. Placenta accreta is associated with decreased decidual natural killer (dNK) cells population: a comparative pilot study. Eur. J. Obstet. Gynecol. Reprod. Biol. 181, 284–288 (2014).
Google Scholar
Kaelin Agten, A. et al. The clinical outcome of cesarean scar pregnancies implanted “on the scar” versus “in the niche. Am. J. Obstet. Gynecol. 216, 510.e511–510.e516 (2017).
Google Scholar
Greenbaum, S. et al. A spatially resolved timeline of the human maternal-fetal interface. Nature 619, 595–605 (2023).
Google Scholar
Wienke, J. et al. Human Tregs at the materno-fetal interface show site-specific adaptation reminiscent of tumor Tregs. JCI Insight 5, 18 (2020).
Yu, X. et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat. Immunol. 10, 48–57 (2009).
Google Scholar
link