Versatility of 14-3-3 proteins and their roles in bone and joint-related diseases

Versatility of 14-3-3 proteins and their roles in bone and joint-related diseases
  • Weng, Q. et al. Global burden of early-onset osteoarthritis, 1990–2019: results from the Global Burden of Disease Study 2019. Ann. Rheum. Dis. 83, 915–925 (2024).

  • Sebbag, E. et al. The worldwide burden of musculoskeletal diseases: a systematic analysis of the World Health Organization burden of diseases database. Ann. Rheum. Dis. 78, 844–848 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Fu, W. et al. Na(v)1.7 as a chondrocyte regulator and therapeutic target for osteoarthritis. Nature 625, 557–565 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Qin, L. et al. Roles of mechanosensitive channel Piezo1/2 proteins in skeleton and other tissues. Bone Res. 9, 44 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wu, X. et al. Kindlin-2 preserves integrity of the articular cartilage to protect against osteoarthritis. Nat. Aging 2, 332–347 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Tang, W. et al. The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science 332, 478–484 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Glyn-Jones, S. et al. Osteoarthritis. Lancet 386, 376–387 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Moore, B. W. & Perez, V. J. Specific acidic proteins of the nervous system. Osteoarthritis and Cartilage/OARS, Osteoarthritis Research Society ed. F. D. Carlson, 343–359 (Prentice-Hall, 1967).

  • Aitken, A. 14-3-3 proteins: a historic overview. Semin. Cancer Biol. 16, 162–172 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Gardino, A. K., Smerdon, S. J. & Yaffe, M. B. Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: a comparison of the X-ray crystal structures of all human 14-3-3 isoforms. Semin. Cancer Biol. 16, 173–182 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Cau, Y., Valensin, D., Mori, M., Draghi, S. & Botta, M. Structure, function, involvement in diseases and targeting of 14-3-3 proteins: an update. Curr. Med. Chem. 25, 5–21 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Celis, J. E. et al. Comprehensive two-dimensional gel protein databases offer a global approach to the analysis of human cells: the transformed amnion cells (AMA) master database and its link to genome DNA sequence data. Electrophoresis 11, 989–1071 (1990).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Fu, H., Subramanian, R. R. & Masters, S. C. 14-3-3 proteins: structure, function, and regulation. Annu. Rev. Pharmacol. Toxicol. 40, 617–647 (2000).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Skoulakis, E. M. & Davis, R. L. 14-3-3 proteins in neuronal development and function. Mol. Neurobiol. 16, 269–284 (1998).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Jia, Y. et al. Targeting macrophage TFEB-14-3-3 epsilon Interface by naringenin inhibits abdominal aortic aneurysm. Cell Discov. 8, 21 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zhang, Y. et al. 14-3-3epsilon: a protein with complex physiology function but promising therapeutic potential in cancer. Cell Commun. Signal. 22, 72 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yaffe, M. B. et al. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91, 961–971 (1997).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Obsilova, V. & Obsil, T. Structural insights into the functional roles of 14-3-3 proteins. Front. Mol. Biosci. 9, 1016071 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Low, Z. Y., Yip, A. J. W., Chan, A. M. L. & Choo, W. S. 14-3-3 family of proteins: biological implications, molecular interactions, and potential intervention in cancer, virus, and neurodegeneration disorders. J. Cell. Biochem. 125, e30624 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Stevers, L. M. et al. Modulators of 14-3-3 protein-protein interactions. J. Med. Chem. 61, 3755–3778 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sluchanko, N. N. & Bustos, D. M. Intrinsic disorder associated with 14-3-3 proteins and their partners. Prog. Mol. Biol. Transl. Sci. 166, 19–61 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Rivero, G. et al. 14-3-3epsilon protein-immobilized PCL-HA electrospun scaffolds with enhanced osteogenicity. J. Mater. Sci. Mater. Med. 30, 99 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kim, H. et al. Selenoprotein W ensures physiological bone remodeling by preventing hyperactivity of osteoclasts. Nat. Commun. 12, 2258 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Yoon, H. E., Kim, K. S. & Kim, I. Y. 14-3-3 eta inhibits chondrogenic differentiation of ATDC5 cell. Biochem. Biophys. Res. Commun. 406, 59–63 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Tazawa, H., Takahashi, S. & Zilliacus, J. Interaction of the parathyroid hormone receptor with the 14-3-3 protein. Biochim. Biophys. Acta 1620, 32–38 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Fu, W. et al. TNFR2/14-3-3epsilon signaling complex instructs macrophage plasticity in inflammation and autoimmunity. J. Clin. Investig. 131, e144016 (2021).

  • Wu, Q., Zhu, J., Liu, F., Liu, J. & Li, M. Downregulation of 14-3-3beta inhibits proliferation and migration in osteosarcoma cells. Mol. Med. Rep. 17, 2493–2500 (2018).

    PubMed 
    CAS 

    Google Scholar 

  • Gong, X. et al. Elevated serum 14-3-3eta protein may be helpful for diagnosis of early rheumatoid arthritis associated with secondary osteoporosis in Chinese population. Clin. Rheumatol. 36, 2581–2587 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Fu, W. et al. 14-3-3 epsilon is an intracellular component of TNFR2 receptor complex and its activation protects against osteoarthritis. Ann. Rheum. Dis. 80, 1615–1627 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Millerand, M. et al. Activation of innate immunity by 14-3-3 epsilon, a new potential alarmin in osteoarthritis. Osteoarthr. Cartil. 28, 646–657 (2020).

    Article 
    CAS 

    Google Scholar 

  • Trimova, G. et al. Tumour necrosis factor-alpha promotes secretion of 14-3-3eta by inducing necroptosis in macrophages. Arthritis Res. Ther. 22, 24 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Yang, X. et al. Structural basis for protein-protein interactions in the 14-3-3 protein family. Proc. Natl. Acad. Sci. USA 103, 17237–17242 (2006).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Obsil, T. & Obsilova, V. Structural basis of 14-3-3 protein functions. Semin. Cell Dev. Biol. 22, 663–672 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Halskau, O. Jr. et al. Three-way interaction between 14-3-3 proteins, the N-terminal region of tyrosine hydroxylase, and negatively charged membranes. J. Biol. Chem. 284, 32758–32769 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Abdi, G. et al. 14-3-3 proteins-a moonlight protein complex with therapeutic potential in neurological disorder: in-depth review with Alzheimer’s disease. Front. Mol. Biosci. 11, 1286536 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Darling, D. L., Yingling, J. & Wynshaw-Boris, A. Role of 14-3-3 proteins in eukaryotic signaling and development. Curr. Top. Dev. Biol. 68, 281–315 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Munier, C. C., Ottmann, C. & Perry, M. W. D. 14-3-3 modulation of the inflammatory response. Pharmacol. Res. 163, 105236 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Muslin, A. J., Tanner, J. W., Allen, P. M. & Shaw, A. S. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84, 889–897 (1996).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Mann, J. et al. Non-canonical BAD activity regulates breast cancer cell and tumor growth via 14-3-3 binding and mitochondrial metabolism. Oncogene 38, 3325–3339 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Sadik, G. et al. Phosphorylation of tau at Ser214 mediates its interaction with 14-3-3 protein: implications for the mechanism of tau aggregation. J. Neurochem.108, 33–43 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Obsilova, V. & Obsil, T. The 14-3-3 Proteins as important allosteric regulators of protein kinases. Int. J. Mol. Sci. 21, 8824 (2020).

  • Kongsamut, S. & Eishingdrelo, H. Modulating GPCR and 14-3-3 protein interactions: prospects for CNS drug discovery. Drug Discov. Today 28, 103641 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Eishingdrelo, H., Qin, X., Yuan, L., Kongsamut, S. & Yu, L. Ligands can differentially and temporally modulate GPCR interaction with 14-3-3 isoforms. Curr. Res. Pharmacol. Drug Discov. 3, 100123 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferl, R. J., Manak, M. S. & Reyes, M. F. The 14-3-3s. Genome Biol. 3, REVIEWS3010 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vigneswara, V. & Ahmed, Z. The role of caspase-2 in regulating cell fate. Cells 9, 1259 (2020).

  • Ramakrishnan, G. et al. AKT and 14-3-3 regulate Notch4 nuclear localization. Sci. Rep. 5, 8782 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Seif, F. et al. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun. Signal 15, 23 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Villarino, A. V., Kanno, Y. & O’Shea, J. J. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat. Immunol. 18, 374–384 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kacirova, M., Novacek, J., Man, P., Obsilova, V. & Obsil, T. Structural Basis for the 14-3-3 protein-dependent inhibition of phosducin function. Biophys. J. 112, 1339–1349 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Agarwal-Mawal, A. et al. 14-3-3 connects glycogen synthase kinase-3 beta to tau within a brain microtubule-associated tau phosphorylation complex. J. Biol. Chem. 278, 12722–12728 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Huang, X. et al. 14-3-3 proteins are potential regulators of liquid-liquid phase separation. Cell Biochem. Biophys. 80, 277–293 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Masters, S. C. et al. Survival-promoting functions of 14-3-3 proteins. Biochem. Soc. Trans. 30, 360–365 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Liu, J. et al. The role of 14-3-3 proteins in cell signalling pathways and virus infection. J. Cell Mol. Med. 25, 4173–4182, (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Yuan, R. et al. Chk1 and 14-3-3 proteins inhibit atypical E2Fs to prevent a permanent cell cycle arrest. EMBO J. 37, e97877 (2018).

  • Zhou, Y. et al. 1,3-Dicaffeoylquinic acid targeting 14-3-3 tau suppresses human breast cancer cell proliferation and metastasis through IL6/JAK2/PI3K pathway. Biochem. Pharm. 172, 113752 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ye, D. Z., Jin, S., Zhuo, Y. & Field, J. p21-Activated kinase 1 (Pak1) phosphorylates BAD directly at serine 111 in vitro and indirectly through Raf-1 at serine 112. PLoS One 6, e27637 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Yan, Y. et al. Implication of 14-3-3epsilon and 14-3-3theta/tau in proteasome inhibition-induced apoptosis of glioma cells. Cancer Sci. 104, 55–61 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sun, Z. et al. 14-3-3zeta targets beta-catenin nuclear translocation to maintain mitochondrial homeostasis and promote the balance between proliferation and apoptosis in cisplatin-induced acute kidney injury. Cell Signal. 111, 110878 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Shen, Q. et al. Overexpression of the 14-3-3gamma protein in uterine leiomyoma cells results in growth retardation and increased apoptosis. Cell Signal. 45, 43–53 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Levine, B. & Kroemer, G. Biological functions of autophagy genes: a disease perspective. Cell 176, 11–42 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Tang, Y. et al. 14-3-3zeta binds to and stabilizes phospho-beclin 1(S295) and induces autophagy in hepatocellular carcinoma cells. J. Cell Mol. Med. 24, 954–964 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zheng, Z., Zhong, Q. & Yan, X. YWHAE/14-3-3epsilon crotonylation regulates leucine deprivation-induced autophagy. Autophagy 19, 2401–2402 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Robichaud, S. et al. Identification of novel lipid droplet factors that regulate lipophagy and cholesterol efflux in macrophage foam cells. Autophagy 17, 3671–3689 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kleppe, R., Martinez, A., Doskeland, S. O. & Haavik, J. The 14-3-3 proteins in regulation of cellular metabolism. Semin. Cell Dev. Biol. 22, 713–719 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Meek, S. E., Lane, W. S. & Piwnica-Worms, H. Comprehensive proteomic analysis of interphase and mitotic 14-3-3-binding proteins. J. Biol. Chem. 279, 32046–32054 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Benton, R., Palacios, I. M. & St Johnston, D. Drosophila 14-3-3/PAR-5 is an essential mediator of PAR-1 function in axis formation. Dev. Cell 3, 659–671 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ding, J. et al. 14-3-3zeta is involved in the anticancer effect of metformin in colorectal carcinoma. Carcinogenesis 39, 493–502 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Tong, Y. et al. KAT2A succinyltransferase activity-mediated 14-3-3zeta upregulation promotes beta-catenin stabilization-dependent glycolysis and proliferation of pancreatic carcinoma cells. Cancer Lett. 469, 1–10 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Phan, L. et al. The cell cycle regulator 14-3-3sigma opposes and reverses cancer metabolic reprogramming. Nat. Commun. 6, 7530 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Thorson, J. A. et al. 14-3-3 proteins are required for maintenance of Raf-1 phosphorylation and kinase activity. Mol. Cell. Biol. 18, 5229–5238 (1998).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Fischer, A. et al. Regulation of RAF activity by 14-3-3 proteins: RAF kinases associate functionally with both homo- and heterodimeric forms of 14-3-3 proteins. J. Biol. Chem. 284, 3183–3194 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Shaul, Y. D. & Seger, R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim. Biophys. Acta 1773, 1213–1226 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Xing, H., Zhang, S., Weinheimer, C., Kovacs, A. & Muslin, A. J. 14-3-3 proteins block apoptosis and differentially regulate MAPK cascades. EMBO J. 19, 349–358 (2000).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Nordgaard, C. et al. Regulation of the Golgi apparatus by p38 and jnk kinases during cellular stress responses. Int. J. Mol. Sci. 22, 9595 (2021).

  • Gomez-Suarez, M. et al. 14-3-3 Proteins regulate Akt Thr308 phosphorylation in intestinal epithelial cells. Cell Death Differ. 23, 1060–1072 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Muslin, A. J. & Xing, H. 14-3-3 proteins: regulation of subcellular localization by molecular interference. Cell Signal. 12, 703–709 (2000).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Tzivion, G., Dobson, M. & Ramakrishnan, G. FoxO transcription factors; Regulation by AKT and 14-3-3 proteins. Biochim. Biophys. Acta 1813, 1938–1945 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Neal, C. L. et al. Overexpression of 14-3-3zeta in cancer cells activates PI3K via binding the p85 regulatory subunit. Oncogene 31, 897–906 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ursini-Siegel, J. et al. The ShcA SH2 domain engages a 14-3-3/PI3’K signaling complex and promotes breast cancer cell survival. Oncogene 31, 5038–5044 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Su, Y. W. et al. 14-3-3sigma regulates B-cell homeostasis through stabilization of FOXO1. Proc. Natl. Acad. Sci. USA 108, 1555–1560 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Hata, A. & Chen, Y. G. TGF-beta signaling from receptors to Smads. Cold Spring Harb. Perspect. Biol. 8, a022061 (2016).

  • Zakharchenko, O., Cojoc, M., Dubrovska, A. & Souchelnytskyi, S. A role of TGFss1 dependent 14-3-3sigma phosphorylation at Ser69 and Ser74 in the regulation of gene transcription, stemness, and radioresistance. PloS One 8, e65163 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Peng, D., Fu, M., Wang, M., Wei, Y. & Wei, X. Targeting TGF-beta signal transduction for fibrosis and cancer therapy. Mol. Cancer 21, 104 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Dovrat, S. et al. 14-3-3 and beta-catenin are secreted on extracellular vesicles to activate the oncogenic Wnt pathway. Mol. Oncol. 8, 894–911 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Lai, X. J. et al. Selective 14-3-3gamma induction quenches p-beta-catenin Ser37/Bax-enhanced cell death in cerebral cortical neurons during ischemia. Cell Death Dis. 5, e1184 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Chang, T. C. et al. 14-3-3sigma regulates beta-catenin-mediated mouse embryonic stem cell proliferation by sequestering GSK-3beta. PloS One 7, e40193 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Valenta, T., Hausmann, G. & Basler, K. The many faces and functions of beta-catenin. EMBO J. 31, 2714–2736 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Koelman, E. M. R., Yeste-Vazquez, A. & Grossmann, T. N. Targeting the interaction of beta-catenin and TCF/LEF transcription factors to inhibit oncogenic Wnt signaling. Bioorg. Med. Chem. 70, 116920 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Freeman, A. K. & Morrison, D. K. 14-3-3 Proteins: diverse functions in cell proliferation and cancer progression. Semin. Cell Dev. Biol. 22, 681–687 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Schlegelmilch, K. et al. Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell 144, 782–795 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Habbig, S. et al. NPHP4, a cilia-associated protein, negatively regulates the Hippo pathway. J. Cell Biol. 193, 633–642 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zuo, S. et al. 14-3-3 epsilon dynamically interacts with key components of mitogen-activated protein kinase signal module for selective modulation of the TNF-alpha-induced time course-dependent NF-kappaB activity. J. Proteome Res. 9, 3465–3478 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Matitau, A. E. & Scheid, M. P. Phosphorylation of MEKK3 at threonine 294 promotes 14-3-3 association to inhibit nuclear factor kappa B activation. J. Biol. Chem. 283, 13261–13268 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Liu, C. J. Progranulin: a promising therapeutic target for rheumatoid arthritis. FEBS Lett. 585, 3675–3680 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Liu, C. J. & Bosch, X. Progranulin: a growth factor, a novel TNFR ligand, and a drug target. Pharmacol. Ther. 133, 124–132 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Cui, Y., Hettinghouse, A. & Liu, C. J. Progranulin: a conductor of receptors orchestra, a chaperone of lysosomal enzymes and a therapeutic target for multiple diseases. Cytokine Growth Factor Rev. 45, 53–64 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Jian, J., Konopka, J. & Liu, C. Insights into the role of progranulin in immunity, infection, and inflammation. J. Leukoc. Biol. 93, 199–208 (2012).

  • Jian, J., Li, G., Hettinghouse, A. & Liu, C. Progranulin: a key player in autoimmune diseases. Cytokine 101, 48–55 (2016).

  • Huang, G., Jian, J. & Liu, C. J. Progranulinopathy: a diverse realm of disorders linked to progranulin imbalances. Cytokine Growth Factor Rev. 76, 142–159 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Fu, W., Hettinghouse, A. & Liu, C. J. In vitro, physical and functional interaction assays to examine the binding of progranulin derivative atsttrin to TNFR2 and its anti-TNFalpha activity. Methods Mol. Biol. 2248, 109–119 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Moradi, L. et al. Injectable hydrogel for sustained delivery of progranulin derivative Atsttrin in treating diabetic fracture healing. Biomaterials 301, 122289 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wei, J. L. et al. Progranulin derivative Atsttrin protects against early osteoarthritis in mouse and rat models. Arthritis Res. Ther. 19, 280 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, Y. P., Tian, Q. Y. & Liu, C. J. Progranulin deficiency exaggerates, whereas progranulin-derived Atsttrin attenuates, severity of dermatitis in mice. FEBS Lett. 587, 1805–1810 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Hettinghouse, A., Fu, W. & Liu, C. J. Monitoring atsttrin-mediated inhibition of TNFalpha/NF-kappabeta activation through in vivo bioluminescence imaging. Methods Mol. Biol. 2248, 201–210 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Katyal, P. et al. Injectable recombinant block polymer gel for sustained delivery of therapeutic protein in post traumatic osteoarthritis. Biomaterials 281, 121370 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zhao, Y. P. et al. Progranulin protects against osteoarthritis through interacting with TNF-alpha and beta-Catenin signalling. Ann. Rheum. Dis. 74, 2244–2253 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Aguilera, C. et al. Efficient nuclear export of p65-IkappaBalpha complexes requires 14-3-3 proteins. J. Cell Sci. 119, 3695–3704 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ingles-Esteve, J. et al. Inhibition of specific NF-kappaB activity contributes to the tumor suppressor function of 14-3-3sigma in breast cancer. PloS One 7, e38347 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Hartman, A. M. & Hirsch, A. K. H. Molecular insight into specific 14-3-3 modulators: Inhibitors and stabilisers of protein-protein interactions of 14-3-3. Eur. J. Med. Chem. 136, 573–584 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Mori, M., Vignaroli, G. & Botta, M. Small molecules modulation of 14-3-3 protein-protein interactions. Drug Discov. Today Technol. 10, e541–547 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Zhao, J., Meyerkord, C. L., Du, Y., Khuri, F. R. & Fu, H. 14-3-3 proteins as potential therapeutic targets. Semin. Cell Dev. Biol. 22, 705–712 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Milroy, L. G., Brunsveld, L. & Ottmann, C. Stabilization and inhibition of protein-protein interactions: the 14-3-3 case study. ACS Chem. Biol. 8, 27–35 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Tian, Q., He, X. C., Hood, L. & Li, L. Bridging the BMP and Wnt pathways by PI3 kinase/Akt and 14-3-3zeta. Cell Cycle 4, 215–216 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Batra, N., Riquelme, M. A., Burra, S. & Jiang, J. X. 14-3-3theta facilitates plasma membrane delivery and function of mechanosensitive connexin 43 hemichannels. J. Cell Sci. 127, 137–146 (2014).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Bronisz, A. et al. Microphthalmia-associated transcription factor interactions with 14-3-3 modulate differentiation of committed myeloid precursors. Mol. Biol. Cell 17, 3897–3906 (2006).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Aldana, A. A., Uhart, M., Abraham, G. A., Bustos, D. M. & Boccaccini, A. R. 14-3-3epsilon protein-loaded 3D hydrogels favor osteogenesis. J. Mater. Sci. Mater. Med. 31, 105 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Liu, Y., Ross, J. F., Bodine, P. V. & Billiard, J. Homodimerization of Ror2 tyrosine kinase receptor induces 14-3-3(beta) phosphorylation and promotes osteoblast differentiation and bone formation. Mol. Endocrinol. 21, 3050–3061 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kong, D. et al. Procoxacin bidirectionally inhibits osteoblastic and osteoclastic activity in bone and suppresses bone metastasis of prostate cancer. J. Exp. Clin. Cancer Res. 42, 45 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Schwarz, T., Murphy, S., Sohn, C. & Mansky, K. C. C-TAK1 interacts with microphthalmia-associated transcription factor, MITF, but not the related family member Tfe3. Biochem. Biophys. Res. Commun. 394, 890–895 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • van Beers-Tas, M. H., Marotta, A., Boers, M., Maksymowych, W. P. & van Schaardenburg, D. A prospective cohort study of 14-3-3eta in ACPA and/or RF-positive patients with arthralgia. Arthritis Res. Ther. 18, 76 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grozinger, C. M. & Schreiber, S. L. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc. Natl. Acad. Sci. 97, 7835–7840 (2000).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Miska, E. A. et al. Differential localization of HDAC4 orchestrates muscle differentiation. Nucleic Acids Res. 29, 3439–3447 (2001).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Guan, Y. et al. Subcellular relocation of histone deacetylase 4 regulates growth plate chondrocyte differentiation through Ca2+/calmodulin-dependent kinase IV. Am. J. Physiol. Cell Physiol. 303, C33–40 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Frontini-Lopez, Y. R., Gojanovich, A. D., Del Veliz, S., Uhart, M. & Bustos, D. M. 14-3-3beta isoform is specifically acetylated at Lys51 during differentiation to the osteogenic lineage. J. Cell. Biochem. 122, 1767–1780 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Nishimori, S., Wein, M. N. & Kronenberg, H. M. PTHrP targets salt-inducible kinases, HDAC4 and HDAC5, to repress chondrocyte hypertrophy in the growth plate. Bone 142, 115709 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Pandey, A. & Bhutani, N. Profiling joint tissues at single-cell resolution: advances and insights. Nat. Rev. Rheumatol. 20, 7–20 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kadiri, M. et al. 14-3-3eta Promotes invadosome formation via the FOXO3-snail axis in rheumatoid arthritis fibroblast-like synoviocytes. Int. J. Mol. Sci. 23, 123 (2021).

  • Barry, E. F. et al. 14-3-3:Shc scaffolds integrate phosphoserine and phosphotyrosine signaling to regulate phosphatidylinositol 3-kinase activation and cell survival. J. Biol. Chem. 284, 12080–12090 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Jiang, J. et al. 14-3-3 regulates the LNK/JAK2 pathway in mouse hematopoietic stem and progenitor cells. J. Clin. Investig. 122, 2079–2091 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zhao, R. et al. MiR-204/14-3-3zeta axis regulates osteosarcoma cell proliferation through SATA3 pathway. Die Pharm. 72, 593–598 (2017).

    CAS 

    Google Scholar 

  • Choi, E. Y. et al. Regulation of LFA-1-dependent inflammatory cell recruitment by Cbl-b and 14-3-3 proteins. Blood 111, 3607–3614 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zhou, R. P. et al. Modulators of ASIC1a and its potential as a therapeutic target for age-related diseases. Ageing Res. Rev. 83, 101785 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lai, Y. et al. ADAMTS-7 forms a positive feedback loop with TNF-alpha in the pathogenesis of osteoarthritis. Ann. Rheum. Dis. 73, 1575–1584 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lin, E. A. & Liu, C. J. The emerging roles of ADAMTS-7 and ADAMTS-12 matrix metalloproteinases. Open Acess Rheumatol. 1,121–131 (2009).

  • Lin, E. A. & Liu, C. J. The role of ADAMTSs in arthritis. Protein Cell 1, 33–47 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Lee, S. W. et al. A purified extract from clematis mandshurica prevents staurosporin-induced downregulation of 14-3-3 and subsequent apoptosis on rat chondrocytes. J. Ethnopharmacol. 111, 213–218 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Yao, Q. et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct. Target Ther. 8, 56 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chijimatsu, R. & Saito, T. Mechanisms of synovial joint and articular cartilage development. Cell Mol. Life Sci. 76, 3939–3952 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Deng, Z. H., Li, Y. S., Gao, X., Lei, G. H. & Huard, J. Bone morphogenetic proteins for articular cartilage regeneration. Osteoarthr. Cartil. 26, 1153–1161 (2018).

    Article 
    CAS 

    Google Scholar 

  • Yin, B. et al. Harnessing tissue-derived extracellular vesicles for osteoarthritis theranostics. Theranostics 12, 207–231 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Gardino, A. K. & Yaffe, M. B. 14-3-3 proteins as signaling integration points for cell cycle control and apoptosis. Semin Cell Dev. Biol. 22, 688–695 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Tan, Y., Ruan, H., Demeter, M. R. & Comb, M. J. p90(RSK) blocks bad-mediated cell death via a protein kinase C-dependent pathway. J. Biol. Chem. 274, 34859–34867 (1999).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Priam, S. et al. Identification of soluble 14-3-3 as a novel subchondral bone mediator involved in cartilage degradation in osteoarthritis. Arthritis Rheum. 65, 1831–1842 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Nefla, M. et al. The pro-inflammatory cytokine 14-3-3epsilon is a ligand of CD13 in cartilage. J. Cell Sci. 128, 3250–3262 (2015).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ghaffari, A., Li, Y., Kilani, R. T. & Ghahary, A. 14-3-3 sigma associates with cell surface aminopeptidase N in the regulation of matrix metalloproteinase-1. J. Cell Sci. 123, 2996–3005 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ali, S. A. et al. Circulating microRNAs differentiate fast-progressing from slow-progressing and non-progressing knee osteoarthritis in the osteoarthritis initiative cohort. Ther. Adv. Musculoskelet. Dis. 14, 1759720X221082917 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Hulme, C. H. et al. Identification of candidate synovial fluid biomarkers for the prediction of patient outcome after microfracture or osteotomy. Am. J. Sports Med. 49, 1512–1523 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Rockel, J. S. & Kapoor, M. The metabolome and osteoarthritis: possible contributions to symptoms and pathology. Metabolites 8, 92 (2018).

  • Huang, J. et al. Association between higher triglyceride glucose index and increased risk of osteoarthritis: data from NHANES 2015-2020. BMC Public Health 24, 758 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Chiba, D. et al. Higher fasting blood glucose worsens knee symptoms in patients with radiographic knee osteoarthritis and comorbid central sensitization: an Iwaki cohort study. Arthritis Res. Ther. 24, 269 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ji, L. et al. The 14-3-3 protein YWHAB inhibits glucagon-induced hepatic gluconeogenesis through interacting with the glucagon receptor and FOXO1. FEBS Lett. 595, 1275–1288 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Neumann, J. et al. Type 2 diabetes patients have accelerated cartilage matrix degeneration compared to diabetes free controls: data from the Osteoarthritis Initiative. Osteoarthr. Cartil. 26, 751–761 (2018).

    Article 
    CAS 

    Google Scholar 

  • Thandavarayan, R. A. et al. 14-3-3 protein regulates Ask1 signaling and protects against diabetic cardiomyopathy. Biochem. Pharmacol. 75, 1797–1806 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lim, G. E. et al. 14-3-3zeta coordinates adipogenesis of visceral fat. Nat. Commun. 6, 7671 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Williams, A., Wang, E. C., Thurner, L. & Liu, C. J. Review: novel insights into tumor necrosis factor receptor, death receptor 3, and progranulin pathways in arthritis and bone remodeling. Arthritis Rheumatol. 68, 2845–2856 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Xu, Y. & Chen, F. Acid-sensing ion channel-1a in articular chondrocytes and synovial fibroblasts: a novel therapeutic target for rheumatoid arthritis. Front. Immunol. 11, 580936 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Gravallese, E. M. & Firestein, G. S. Rheumatoid arthritis – common origins, divergent mechanisms. N. Engl. J. Med. 388, 529–542 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zeng, T., Tan, L., Wu, Y. & Yu, J. 14-3-3eta protein in rheumatoid arthritis: promising diagnostic marker and independent risk factor for osteoporosis. Lab. Med. 51, 529–539 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Hammam, N., Salah, S., Kholef, E. F., Moussa, E. M. & Marotta, A. 14-3-3eta protein in serum and synovial fluid correlates with radiographic damage and progression in a longitudinal evaluation of patients with established rheumatoid arthritis. Mod. Rheumatol. 30, 664–670 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hirata, S., Marotta, A., Gui, Y., Hanami, K. & Tanaka, Y. Serum 14-3-3eta level is associated with severity and clinical outcomes of rheumatoid arthritis, and its pretreatment level is predictive of DAS28 remission with tocilizumab. Arthritis Res. Ther. 17, 280 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maksymowych, W. P. et al. Serum 14-3-3eta is a novel marker that complements current serological measurements to enhance detection of patients with rheumatoid arthritis. J. Rheumatol. 41, 2104–2113 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhang, Y. et al. ASIC1a induces synovial inflammation via the Ca2+/NFATc3/ RANTES pathway. Theranostics 10, 247–264 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Xu, Y. et al. Acid sensor ASIC1a induces synovial fibroblast proliferation via Wnt/beta-catenin/c-Myc pathway in rheumatoid arthritis. Int. Immunopharmacol. 113, 109328 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Niu, R. et al. ASIC1a promotes synovial invasion of rheumatoid arthritis via Ca2+/Rac1 pathway. Int. Immunopharmacol. 79, 106089 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wei, F. et al. PGRN protects against colitis progression in mice in an IL-10 and TNFR2 dependent manner. Sci. Rep. 4, 7023 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wei, J. L., Buza, J. 3rd & Liu, C. J. Does progranulin account for the opposite effects of etanercept and infliximab/adalimumab in osteoarthritis? Comment on Olson et al.: “Therapeutic opportunities to prevent post-traumatic arthritis: lessons from the natural history of arthritis after articular fracture”. J. Orthop. Res. 34, 12–14 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Kilani, R. T. et al. Detection of high levels of 2 specific isoforms of 14-3-3 proteins in synovial fluid from patients with joint inflammation. J. Rheumatol. 34, 1650–1657 (2007).

    PubMed 
    CAS 

    Google Scholar 

  • Huang, Y., Yang, M. & Huang, W. 14-3-3 sigma: a potential biomolecule for cancer therapy. Clin. Chim. Acta. Int. J. Clin. Chem. 511, 50–58 (2020).

    Article 
    CAS 

    Google Scholar 

  • Meltzer, P. S. & Helman, L. J. New horizons in the treatment of osteosarcoma. N. Engl. J. Med. 385, 2066–2076 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Gorlick, R. et al. Children’s Oncology group’s 2013 blueprint for research: bone tumors. Pediatr. Blood Cancer 60, 1009–1015 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Kager, L. et al. Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J. Clin. Oncol. 21, 2011–2018 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Yang, Z. et al. 14-3-3sigma downregulation suppresses ICC metastasis via impairing migration, invasion, and anoikis resistance of ICC cells. Cancer Biomark. 19, 313–325 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Xiao, Y. et al. 14-3-3tau promotes breast cancer invasion and metastasis by inhibiting RhoGDIalpha. Mol. Cell Biol. 34, 2635–2649 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hao, X. et al. CircPAK1 promotes the progression of hepatocellular carcinoma via modulation of YAP nucleus localization by interacting with 14-3-3zeta. J. Exp. Clin. Cancer Res. 41, 281 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Chu, Y. W., Wang, C. R., Weng, F. B., Yan, Z. J. & Wang, C. MicroRNA-222 contributed to cell proliferation, invasion and migration via regulating YWHAG in osteosarcoma. Eur. Rev. Med. Pharm. Sci. 22, 2588–2597 (2018).

    Google Scholar 

  • Kim, K. O. et al. Proteomic identification of 14-3-3ϵ as a linker protein between pERK1/2 inhibition and BIM upregulation in human osteosarcoma cells. J. Orthop. Res. 32, 848–854 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ahrens, W. A., Ridenour, R. V. 3rd, Caron, B. L., Miller, D. V. & Folpe, A. L. GLUT-1 expression in mesenchymal tumors: an immunohistochemical study of 247 soft tissue and bone neoplasms. Hum. Pathol. 39, 1519–1526 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ngo, S., Barry, J. B., Nisbet, J. C., Prins, J. B. & Whitehead, J. P. Reduced phosphorylation of AS160 contributes to glucocorticoid-mediated inhibition of glucose uptake in human and murine adipocytes. Mol. Cell. Endocrinol. 302, 33–40 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Shan, H. J., Gu, W. X., Duan, G. & Chen, H. L. Fat mass and obesity-associated (FTO)-mediated N6-methyladenosine modification of Kruppel-like factor 3 (KLF3) promotes osteosarcoma progression. Bioengineered 13, 8038–8050 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Bereza, M. et al. Epigenetic abnormalities in chondrosarcoma. Int. J. Mol. Sci. 24, 4539 (2023).

  • Rock, A., Ali, S. & Chow, W. A. Systemic therapy for chondrosarcoma. Curr. Treat. Options Oncol. 23, 199–209 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Giuffrida, A. Y. et al. Chondrosarcoma in the United States (1973 to 2003): an analysis of 2890 cases from the SEER database. J. Bone Jt. Surg. Am. 91, 1063–1072 (2009).

    Article 

    Google Scholar 

  • Evans, H. L., Ayala, A. G. & Romsdahl, M. M. Prognostic factors in chondrosarcoma of bone: a clinicopathologic analysis with emphasis on histologic grading. Cancer 40, 818–831 (1977).

  • Gelderblom, H. et al. The clinical approach towards chondrosarcoma. Oncologist 13, 320–329 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Whelan, J. S. & Davis, L. E. Osteosarcoma, chondrosarcoma, and chordoma. J. Clin. Oncol. 36, 188–193 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Yang, W. H. et al. Epigallocatechin-3-gallate induces cell apoptosis of human chondrosarcoma cells through apoptosis signal-regulating kinase 1 pathway. J. Cell Biochem. 112, 1601–1611 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kidd, M. E., Shumaker, D. K. & Ridge, K. M. The role of vimentin intermediate filaments in the progression of lung cancer. Am. J. Respir. Cell Mol. Biol. 50, 1–6 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Y. J., Jan, Y. J., Ko, B. S., Liang, S. M. & Liou, J. Y. Involvement of 14-3-3 proteins in regulating tumor progression of hepatocellular carcinoma. Cancers 7, 1022–1036 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Lee, J. X. T. et al. YWHAG deficiency disrupts the EMT-associated network to induce oxidative cell death and prevent metastasis. Adv. Sci. 10, e2301714 (2023).

    Article 

    Google Scholar 

  • Shinohara, N. et al. TGF-beta signalling and PEG10 are mutually exclusive and inhibitory in chondrosarcoma cells. Sci. Rep. 7, 13494 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hong, H. Y., Jeon, W. K., Kim, S. J. & Kim, B. C. 14-3-3 sigma is a new target up-regulated by transforming growth factor-beta1 through a Smad3-dependent mechanism. Biochem. Biophys. Res. Commun. 432, 193–197 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Xu, J. et al. 14-3-3zeta turns TGF-beta’s function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2. Cancer Cell 27, 177–192 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Li, G. et al. Slug signaling is up-regulated by CCL21/CCR7 [corrected] to induce EMT in human chondrosarcoma. Med. Oncol. 32, 478 (2015).

    PubMed 

    Google Scholar 

  • Huang, X. Y. et al. alphaB-crystallin complexes with 14-3-3zeta to induce epithelial-mesenchymal transition and resistance to sorafenib in hepatocellular carcinoma. Hepatology 57, 2235–2247 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Raychaudhuri, K. et al. 14-3-3sigma gene loss leads to activation of the epithelial to mesenchymal transition due to the stabilization of c-jun protein. J. Biol. Chem. 291, 16068–16081 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Cowan, A. J. et al. Diagnosis and management of multiple myeloma: a review. JAMA 327, 464–477 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Cowan, A. J. et al. Global burden of multiple myeloma: a systematic analysis for the global burden of disease study 2016. JAMA Oncol. 4, 1221–1227 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Minnie, S. A. & Hill, G. R. Immunotherapy of multiple myeloma. J. Clin. Investig. 130, 1565–1575 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Diaz de la Guardia, R. et al. Expression profile of telomere-associated genes in multiple myeloma. J. Cell Mol. Med. 16, 3009–3021 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Obeng, E. A. et al. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107, 4907–4916 (2006).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Bianchi, G. et al. The proteasome load versus capacity balance determines apoptotic sensitivity of multiple myeloma cells to proteasome inhibition. Blood 113, 3040–3049 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Gu, Y. et al. 14-3-3zeta binds the proteasome, limits proteolytic function, and enhances sensitivity to proteasome inhibitors. Leukemia 32, 744–751 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Takahashi, T. et al. Synergistic combination therapy with cotylenin A and vincristine in multiple myeloma models. Int. J. Oncol. 46, 1801–1809 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Dehlin, M., Jacobsson, L. & Roddy, E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol. 16, 380–390 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Wijnands, J. M. et al. Determinants of the prevalence of gout in the general population: a systematic review and meta-regression. Eur. J. Epidemiol. 30, 19–33 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Dogan, I. et al. 14-3-3 eta ETA protein as a potential marker of joint damage in gout. Clin. Biochem. 118, 110611 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Phipps-Green, A. J. et al. Twenty-eight loci that influence serum urate levels: analysis of association with gout. Ann. Rheum. Dis. 75, 124–130 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Martinon, F. & Glimcher, L. H. Gout: new insights into an old disease. J. Clin. Investig. 116, 2073–2075 (2006).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • van de Veerdonk, F. L., Netea, M. G., Dinarello, C. A. & Joosten, L. A. Inflammasome activation and IL-1beta and IL-18 processing during infection. Trends Immunol. 32, 110–116 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Tran, T. H., Pham, J. T., Shafeeq, H., Manigault, K. R. & Arya, V. Role of interleukin-1 inhibitors in the management of gout. Pharmacotherapy 33, 744–753 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Liu, Y. R., Wang, J. Q. & Li, J. Role of NLRP3 in the pathogenesis and treatment of gout arthritis. Front. Immunol. 14, 1137822 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Reid, I. R. & Billington, E. O. Drug therapy for osteoporosis in older adults. Lancet 399, 1080–1092 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Johnston, C. B. & Dagar, M. Osteoporosis in older adults. Med. Clin. North Am. 104, 873–884 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Johnell, O. & Kanis, J. A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 17, 1726–1733 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kanis, J. A. et al. Long-term risk of osteoporotic fracture in Malmo. Osteoporos. Int. 11, 669–674 (2000).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Jiang, H. X. et al. Development and initial validation of a risk score for predicting in-hospital and 1-year mortality in patients with hip fractures. J. Bone Min. Res. 20, 494–500 (2005).

    Article 
    CAS 

    Google Scholar 

  • Vilaca, T., Eastell, R. & Schini, M. Osteoporosis in men. Lancet Diabetes Endocrinol. 10, 273–283 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Anish, R. J. & Nair, A. Osteoporosis management-current and future perspectives—a systemic review. J. Orthop. 53, 101–113 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Huang, J., Huang, J., Hu, W. & Zhang, Z. Heat shock protein 90 alpha and 14-3-3eta in postmenopausal osteoporotic rats with varying levels of serum FSH. Climacteric 23, 581–590 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Abdelhafiz, D., Baker, T., Glascow, D. A. & Abdelhafiz, A. Biomarkers for the diagnosis and treatment of rheumatoid arthritis—a systematic review. Postgrad. Med. 135, 214–223 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Tao, H. et al. Urolithin A suppresses RANKL-induced osteoclastogenesis and postmenopausal osteoporosis by, suppresses inflammation and downstream NF-kappaB-activated pyroptosis pathways. Pharm. Res. 174, 105967 (2021).

    Article 
    CAS 

    Google Scholar 

  • An, Y. et al. Activation of ROS/MAPKs/NF-kappaB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis. FASEB J. 33, 12515–12527 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Li, Y. et al. Urolithin B suppressed osteoclast activation and reduced bone loss of osteoporosis via inhibiting ERK/NF-kappaB pathway. Cell Prolif. 55, e13291 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Li, S. et al. 14-3-3 protein of neospora caninum modulates host cell innate immunity through the activation of MAPK and NF-kappaB pathways. Front. Microbiol. 10, 37 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, T. et al. RDIVpSGP motif of ASPP2 binds to 14-3-3 and enhances ASPP2/k18/14-3-3 ternary complex formulation to promote BRAF/MEK/ERK signal-inhibited cell proliferation in hepatocellular carcinoma. Cancer Gene Ther. 29, 1616–1627 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ottmann, C. et al. A structural rationale for selective stabilization of anti-tumor interactions of 14-3-3 proteins by cotylenin A. J. Mol. Biol. 386, 913–919 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Anders, C. et al. A semisynthetic fusicoccane stabilizes a protein-protein interaction and enhances the expression of K+ channels at the cell surface. Chem. Biol. 20, 583–593 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bier, D. et al. Small-molecule stabilization of the 14-3-3/Gab2 protein-protein interaction (PPI) interface. Chem. Med. Chem. 11, 911–918 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Rose, R. et al. Identification and structure of small-molecule stabilizers of 14-3-3 protein-protein interactions. Angew. Chem. Int. Ed. Engl. 49, 4129–4132 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Richter, A., Rose, R., Hedberg, C., Waldmann, H. & Ottmann, C. An optimised small-molecule stabiliser of the 14-3-3-PMA2 protein-protein interaction. Chemistry 18, 6520–6527 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sato, S. et al. Metabolite regulation of nuclear localization of carbohydrate-response element-binding protein (ChREBP): role of AMP as an allosteric inhibitor. J. Biol. Chem. 291, 10515–10527 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Takahashi, S., Wakui, H., Gustafsson, J. A., Zilliacus, J. & Itoh, H. Functional interaction of the immunosuppressant mizoribine with the 14-3-3 protein. Biochem. Biophys. Res. Commun. 274, 87–92 (2000).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Mancini, M. et al. A new nonpeptidic inhibitor of 14-3-3 induces apoptotic cell death in chronic myeloid leukemia sensitive or resistant to imatinib. J. Pharm. Exp. Ther. 336, 596–604 (2011).

    Article 
    CAS 

    Google Scholar 

  • Zhao, J. et al. Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor. Proc. Natl. Acad. Sci. USA 108, 16212–16216 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ottmann, C. et al. Structure of a 14-3-3 coordinated hexamer of the plant plasma membrane H+ -ATPase by combining X-ray crystallography and electron cryomicroscopy. Mol. Cell 25, 427–440 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wu, H., Ge, J. & Yao, S. Q. Microarray-assisted high-throughput identification of a cell-permeable small-molecule binder of 14-3-3 proteins. Angew. Chem. Int. Ed. Engl. 49, 6528–6532 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Aghazadeh, Y. & Papadopoulos, V. The role of the 14-3-3 protein family in health, disease, and drug development. Drug Discov. Today 21, 278–287 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Arrendale, A. et al. Synthesis of a phosphoserine mimetic prodrug with potent 14-3-3 protein inhibitory activity. Chem. Biol. 19, 764–771 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Corradi, V. et al. Computational techniques are valuable tools for the discovery of protein-protein interaction inhibitors: the 14-3-3σ case. Bioorg. Med. Chem. Lett. 21, 6867–6871 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Mori, M. et al. Discovery of 14-3-3 protein-protein interaction inhibitors that sensitize multidrug-resistant cancer cells to doxorubicin and the Akt inhibitor GSK690693. Chem. Med. Chem. 9, 973–983 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Park, K. D. et al. Identification of a lacosamide binding protein using an affinity bait and chemical reporter strategy: 14-3-3 ζ. J. Am. Chem. Soc. 133, 11320–11330 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ottmann, C. Small-molecule modulators of 14-3-3 protein-protein interactions. Bioorg. Med. Chem. 21, 4058–4062 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sawada, M. et al. Synthesis and anti-migrative evaluation of moverastin derivatives. Bioorg. Med. Chem. Lett. 21, 1385–1389 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Du, Y., Masters, S. C., Khuri, F. R. & Fu, H. Monitoring 14-3-3 protein interactions with a homogeneous fluorescence polarization assay. J. Biomol. Screen 11, 269–276 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bier, D. et al. Molecular tweezers modulate 14-3-3 protein-protein interactions. Nat. Chem. 5, 234–239 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Masters, S. C. & Fu, H. 14-3-3 proteins mediate an essential anti-apoptotic signal. J. Biol. Chem. 276, 45193–45200 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Aghazadeh, Y., Martinez-Arguelles, D. B., Fan, J., Culty, M. & Papadopoulos, V. Induction of androgen formation in the male by a TAT-VDAC1 fusion peptide blocking 14-3-3ɛ protein adaptor and mitochondrial VDAC1 interactions. Mol. Ther. 22, 1779–1791 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Xu, Y. et al. YWHAE/14-3-3epsilon expression impacts the protein load, contributing to proteasome inhibitor sensitivity in multiple myeloma. Blood 136, 468–479 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • link